Mo  $K\alpha$  radiation

Cell parameters from 24

 $\lambda = 0.71073 \text{ Å}$ 

reflections

 $\theta = 14.3 - 15.0^{\circ}$ 

T = 299 K

Needle

Dark red

 $\mu = 0.953 \text{ mm}^{-1}$ 

 $0.9 \times 0.1 \times 0.1 \text{ mm}$ 

Crystal data

 $[Co(C_{5}H_{7}O_{2})_{2}(NO_{2})-(C_{6}H_{7}N)]$   $M_{r} = 396.29$ Orthorhombic *Pnma*  a = 13.451 (3) Å b = 14.746 (3) Å c = 9.402 (3) Å V = 1864.9 (8) Å<sup>3</sup> Z = 4  $D_{x} = 1.411$  Mg m<sup>-3</sup>  $D_{m}$  not measured

| Data collection                                                                                                                                     |                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data collection<br>Rigaku AFC-5 diffractom-<br>eter<br>$\omega$ scans<br>Absorption correction:<br>by integration (Coppens,<br>Leiserowitz & Rabin- | 1955 reflections with<br>$ F_o  > 3\sigma( F_o )$<br>$\theta_{max} = 30.0^{\circ}$<br>$h = 0 \rightarrow 18$<br>$k = 0 \rightarrow 20$<br>$l = 0 \rightarrow 13$ |
| ovich, 1965)<br>$T_{min} = 0.885, T_{max} = 0.926$<br>2815 measured reflections<br>2815 independent reflections                                     | 3 standard reflections<br>every 100 reflections<br>intensity decay: none                                                                                         |

Refinement

Refinement on F $(\Delta/\sigma)_{max} = 0.047$ R = 0.048 $\Delta\rho_{max} = 0.66$  e Å<sup>-3</sup>wR = 0.041 $\Delta\rho_{min} = -0.47$  e Å<sup>-3</sup>S = 1.20Extinction correction: none1955 reflectionsScattering factors from Inter-140 parametersNormal Tables for X-rayOnly H-atom U's refinedCrystallography (Vol. IV) $w = 1/[\sigma^2(F) + 0.000225F^2]$ 

# Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å<sup>2</sup>)

$$U_{\text{eq}} = (1/3) \sum_{i} \sum_{j} U^{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$$

|     | х           | y          | z           | $U_{co}$   |
|-----|-------------|------------|-------------|------------|
| Col | 0.62470 (3) | 1/4        | 0.60300 (4) | 0.0308 (1) |
| 02  | 0.5457 (1)  | 0.1646(1)  | 0.6993 (2)  | 0.0402 (5) |
| O3  | 0.7033 (1)  | 0.1645(1)  | 0.5063 (2)  | 0.0410 (5) |
| 04  | 0.7464 (2)  | 0.3215(1)  | 0.8068 (2)  | 0.0783 (8) |
| N5  | 0.7172 (2)  | 1/4        | 0.7565 (3)  | 0.0418 (9) |
| N6  | 0.5268 (2)  | 1/4        | 0.4427 (2)  | 0.0335 (8) |
| C7  | 0.5519 (2)  | 0.0790(2)  | 0.6811 (2)  | 0.0468 (8) |
| C8  | 0.6191 (2)  | 0.0359(1)  | 0.5935 (3)  | 0.0538 (8) |
| C9  | 0.6923 (2)  | 0.0789 (2) | 0.5159 (3)  | 0.0464 (8) |
| C10 | 0.4775 (3)  | 0.0256 (2) | 0.7670(3)   | 0.071(1)   |
| C11 | 0.7671 (3)  | 0.0249 (2) | 0.4336 (4)  | 0.081(1)   |
| C12 | 0.5560 (2)  | 1/4        | 0.3060 (3)  | 0.043(1)   |
| C13 | 0.4913 (3)  | 1/4        | 0.1932 (4)  | 0.053(1)   |
| C14 | 0.3913 (3)  | 1/4        | 0.2238 (4)  | 0.059(1)   |
| C15 | 0.3600 (3)  | 1/4        | 0.3616 (4)  | 0.060(1)   |
| C16 | 0.4294 (2)  | 1/4        | 0.4698 (4)  | 0.045(1)   |
| C17 | 0.5314 (5)  | 1/4        | 0.0411 (5)  | 0.097 (3)  |

#### Table 2. Selected geometric parameters (Å, °)

| 1.880 (2)<br>1.880 (2) | Co1—N6<br>O4—N5                                             | 2.001 (3)                                                                                    |
|------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 1.905 (3)              | 0.1.0                                                       | 1.220 (5                                                                                     |
| 84.1 (1)<br>95.8 (1)   | O3—Co1—N5<br>O3—Co1—N6                                      | 89.9 (1)<br>90.3 (2)                                                                         |
|                        | 1.880 (2)<br>1.880 (2)<br>1.905 (3)<br>84.1 (1)<br>95.8 (1) | 1.880 (2) Co1—N6<br>1.880 (2) O4—N5<br>1.905 (3)<br>84.1 (1) O3—Co1—N5<br>95.8 (1) O3—Co1—N6 |

© 1998 International Union of Crystallography Printed in Great Britain – all rights reserved

| O2-Co1-O3 <sup>i</sup> | 179.8(1) | N5-Co1-N6           | 179.6 (2) |
|------------------------|----------|---------------------|-----------|
| 02—Co1—N5              | 90.2(1)  | Co1-N5-O4           | 120.2 (2) |
| 02-Co1-N6              | 89.5 (2) | 04N504 <sup>i</sup> | 119.5 (3) |
| Summating and as (1)   |          |                     |           |

Symmetry code: (i)  $x, \frac{1}{2} - y, z$ .

Positions of all H atoms were calculated geometrically and restrained to maintain the C—H distance at 0.96 Å.

Data collection: AFC/MSC Diffractometer Control Software (Rigaku Corporation, 1993). Cell refinement: AFC/MSC Diffractometer Control Software. Data reduction: local programs. Program(s) used to solve structure: CRYSTAN-GM (Edwards et al., 1996). Program(s) used to refine structure: CRYSTAN-GM. Molecular graphics: CRYSTAN-GM. Software used to prepare material for publication: CRYSTAN-GM.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1185). Services for accessing these data are described at the back of the journal.

#### References

- Boucher, L. J. & Bailar, J. C. Jr (1965). Inorg. Nucl. Chem. 27, 1093-1099.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
- Edwards, C., Gilmore, C. J., Mackay, S. & Stewart, N. (1996). CRYSTAN-GM. Version 6.3. Computer Program for the Solution and Refinement of Crystal Structures. MacScience, Japan.
- Johnson, D. A. & Martin, J. E. (1969). Inorg. Chem. 8, 2509-2511.
- Kubota, M. & Ohba, S. (1992). Acta Cryst. B48, 627-632.
- Masciocchi, N., Kolyshev, A., Dulepov, V., Boldyreva, E. & Sironi, A. (1994). Inorg. Chem. 33, 2579–2585.
- Rigaku Corporation (1993). AFC/MSC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.

Acta Cryst. (1998). C54, 47-49

## Structure of the Chromium(III) Salt [Cp<sup>\*</sup><sub>2</sub>Cr]<sup>+</sup>[Cp<sup>\*</sup>CrCl<sub>3</sub>]<sup>-</sup>

SIMON ALDRIDGE, MAOYU SHANG AND THOMAS P. FEHLNER

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA. E-mail: thomas.p. fehlner.1@nd.edu

(Received 8 May 1997; accepted 19 August 1997)

#### Abstract

The title compound, bis ( $\eta^5$ -pentamethylcyclopentadienyl) chromium (III) trichloro ( $\eta^5$ -pentamethylcyclopentadienyl) chromium (III), [Cr(C<sub>10</sub>H<sub>15</sub>)<sub>2</sub>][CrCl<sub>3</sub>(C<sub>10</sub>-H<sub>15</sub>)], is a salt consisting of discrete anionic [{ $\eta^5$ -C<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>}CrCl<sub>3</sub>]<sup>-</sup> and cationic [{ $\eta^5$ -C<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>}<sub>2</sub>Cr]<sup>+</sup> chromium(III) species. The anion adopts a 'three-legged piano-stool' structure, whereas the cation displays a staggered orientation of the C<sub>5</sub> rings and approximates to  $D_{5d}$  local symmetry. The Cr—C distances range from 2.177 (5) to 2.208 (4) Å in the cation and from 2.234 (4) to 2.265 (5) Å in the anion; Cr—Cl distances in the anion fall in the range 2.320 (1)–2.331 (1) Å.

### Comment

In the course of our work on the synthesis of inorganometallic clusters of chromium and molybdenum (Ho et al., 1995; Aldridge, Fehlner & Shang, 1997), we have been using pentamethylcyclopentadienyl metal halides (such as [Cp\*CrCl]<sub>2</sub> and [Cp\*MoCl<sub>2</sub>]<sub>2</sub>; Cp\* is pentamethylcyclopentadienyl) as the metal-containing precursors in highly selective routes to boron-rich species of the type  $M_2B_x$  (x = 3, 4 or 5). The reaction of one such cluster,  $(Cp^*Cr)_2B_4H_8$ , with reagents containing a B-Cl bond (e.g. BHCl<sub>2</sub>.SMe<sub>2</sub>, BCl<sub>3</sub>.SMe<sub>2</sub> and PhBCl<sub>2</sub>) has been investigated and shown to involve cluster degradation. In the case of the reaction with PhBCl<sub>2</sub>, cluster breakdown was shown to proceed with regeneration of Cr-Cl bonds and the title compound,  $[Cp_2^*Cr]^+[Cp^*CrCl_3]^-$ , (I), was isolated in ca 50% yield.



The structure consists of discrete  $[Cp_2^*Cr]^+$  and  $[Cp^*CrCl_3]^-$  ions. The  $[Cp_2^*Cr]^+$  cation displays a staggered orientation of the two Cp\* rings, in contrast to the eclipsed conformation observed for the same cation in the salt  $[Cp_2^*Cr]^+[TCNE]^-$  (Miller et al., 1993), but similar to that found in the iron analogue [Cp<sup>5</sup>Fe]<sup>+</sup>[TCNE]<sup>-</sup> (Miller et al., 1987) (TCNE is tetracyanoethenide). The mean Cr-C bond length [2.193(5)A] is similar to that found in the TCNE salt (2.197 Å), although the range of values is much narrower [2.177 (5)-2.208 (4) Å as opposed to 2.137-2.278 Å] for the staggered species. The differing conformational geometries are also reflected in the slightly shorter Cr-(ring centroid) distance for the title compound [1.83 (5) versus 1.87 Å]. Presumably the staggered orientation allows closer interaction of each ring with the metal centre. The Cr-(ring centroid) distance is only slightly different from that found for the chromium(II) species Cp<sup>\*</sup><sub>2</sub>Cr (1.797 Å; Bottomley et al., 1991), reflecting the formal removal of a single electron from an essentially non-bonding  $e_{2g}$  orbital.

The anionic species  $[Cp^*CrCl_3]^-$  represents a rare example of a crystallographically characterized  $CpMX_3$  trihalide species (M = Cr, Mo or W) with a 'three-legged piano-stool' structure. Interestingly, the Cl—Cr—Cl

angles (and Cr—Cl bond lengths) show little difference from those reported for Li[CpCrCl<sub>3</sub>] [91.3 (2)–95.7 (2)° and 2.211 (18)–2.322 (18) Å, respectively; Müller & Krausse, 1972], despite the greater steric demands of the permethylated Cp\* ligand.



Fig. 1. The molecular structure of the title salt showing 40% probability displacement ellipsoids.

#### **Experimental**

Synthesis was carried out by the reaction of  $(Cp^*Cr)_2B_4H_8$ and PhBCl<sub>2</sub> (molar ratio 1:1.2) in toluene solution for 72 h at 328 K under an argon atmosphere. The green precipitate so formed was separated from the supernatant, washed thoroughly with toluene and recrystallized by slow diffusion of hexane into a tetrahydrofuran solution.

Crystal data

| $[Cr(C_{10}H_{15})_2][CrCl_3-(C_{10}H_{15})]M_r = 616.01Monoclinic$                                                                                                                                                                           | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å<br>Cell parameters from 25<br>reflections                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $P2_{1}/c$ $a = 12.602 (2) Å$ $b = 13.0428 (10) Å$ $c = 19.074 (3) Å$ $\beta = 94.289 (7)^{\circ}$ $V = 3126.4 (7) Å^{3}$                                                                                                                     | $\theta = 13-14^{\circ}$<br>$\mu = 0.968 \text{ mm}^{-1}$<br>T = 293 (2)  K<br>Bar<br>$0.33 \times 0.18 \times 0.13 \text{ mm}$<br>Very dark green                                                                                                           |
| Z = 4<br>$D_x = 1.309 \text{ Mg m}^{-3}$<br>$D_m \text{ not measured}$<br>Data collection                                                                                                                                                     |                                                                                                                                                                                                                                                              |
| Enraf-Nonius CAD-4<br>diffractometer<br>$\theta/2\theta$ scans<br>Absorption correction:<br>$\psi$ scan (North, Phillips<br>& Mathews, 1968)<br>$T_{min} = 0.84, T_{max} = 0.88$<br>5736 measured reflections<br>5480 independent reflections | 4242 reflections with<br>$I > 2\sigma(I)$<br>$R_{int} = 0.022$<br>$\theta_{max} = 25.0^{\circ}$<br>$h = 0 \rightarrow 14$<br>$k = 0 \rightarrow 15$<br>$l = -22 \rightarrow 22$<br>3 standard reflections<br>every 200 reflections<br>intensity decay: 12.3% |

Refinement

| Refinement on $F^2$                     | $\Delta \rho_{\rm max} = 0.290 \ {\rm e} \ {\rm \AA}^{-3}$  |
|-----------------------------------------|-------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.053$         | $\Delta \rho_{\rm min} = -0.256 \ {\rm e} \ {\rm \AA}^{-3}$ |
| $wR(F^2) = 0.147$                       | Extinction correction:                                      |
| S = 1.153                               | SHELXL93 (Sheldrick,                                        |
| 5477 reflections                        | 1993)                                                       |
| 317 parameters                          | Extinction coefficient:                                     |
| H atoms: see below                      | 0.0002 (2)                                                  |
| $w = 1/[\sigma^2(F_o^2) + (0.0439P)^2]$ | Scattering factors from                                     |
| + 5.8729 <i>P</i> ]                     | International Tables for                                    |
| where $P = (F_o^2 + 2F_c^2)/3$          | Crystallography (Vol. C)                                    |
| $(\Delta/\sigma)_{\rm max} = -0.002$    |                                                             |

#### Table 1. Selected geometric parameters (Å, °)

| Cr1—C4      | 2.234 (4)   | Cr1—Cl1     | 2.3308 (14) |
|-------------|-------------|-------------|-------------|
| Cr1-C1      | 2.250 (4)   | Cr2C25      | 2.177 (5)   |
| Cr1—C2      | 2.253 (4)   | Cr2C24      | 2.182 (5)   |
| Cr1-C5      | 2.262 (4)   | Cr2C21      | 2.185 (5)   |
| Cr1—C3      | 2.265 (5)   | Cr2C23      | 2.193 (4)   |
| Cr1—Cl3     | 2.3195 (14) | Cr2C22      | 2.208 (4)   |
| CrI-Cl2     | 2.3208 (14) |             |             |
| Cl3-Cr1-Cl2 | 95.02 (6)   | Cl2—Cr1—Cl1 | 97.92 (6)   |
| Cl3—Cr1—Cl1 | 98.34 (6)   |             |             |

Most of the non-H atoms were located by direct methods and the remainder were found in difference Fourier syntheses. Anisotropic displacement parameters were refined for all non-H atoms. All H atoms were located from difference syntheses. In the final refinement, the positions of the H atoms were idealized with a riding model which imposed geometric constraints on the positional parameters of the H atoms used in the refinement [C—H = 0.96 Å and  $U_{iso}(H) = 1.5U_{eq}(C)$ ].

Data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977). Cell refinement: CAD-4 Operations Manual. Data reduction: SDP (Enraf-Nonius, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL (Siemens, 1994). Software used to prepare material for publication: SHELXTL.

We thank the National Science Foundation for financial support. SA also thanks the J. William Fulbright Scholarship Board for the award of a research scholarship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1067). Services for accessing these data are described at the back of the journal.

#### References

- Aldridge, S., Fehlner, T. P. & Shang, M. (1997). J. Am. Chem. Soc. 119, 2339-2340.
- Bottomley, F., Chen, J., MacIntosh, S. M. & Thompson, R. C. (1991). Organometallics, 10, 906–912.
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Enraf-Nonius (1985). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- Ho, J., Deck, K. J., Nishihara, Y., Shang, M. & Fehlner, T. P. (1995). J. Am. Chem. Soc. 117, 10292–10299.
- Miller, J. S., Calabrese, J. C., Rommelmann, H., Chittipeddi, S. R., Zhang, J. H., Reiff, W. M. & Epstein, A. J. (1987). J. Am. Chem. Soc. 109, 769-781.

© 1998 International Union of Crystallography Printed in Great Britain – all rights reserved Miller, J. S., Mclean, R. S., Vasquez, C., Calabrese, J. C., Zuo, F. & Epstein, A. J. (1993). J. Mater. Chem. 3, 215–218.

- Müller, B. & Krausse, J. (1972). J. Organomet. Chem. 44, 141-159.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–358.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). SHELXTL. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1998). C54, 49-51

## First $Hg^{II}$ - $\omega$ -Thiocaprolactam Complex

María Elena Nuñez Gaytán,<sup>a</sup>† Sylvain Bernès,<sup>b</sup> Eduardo Rodríguez de San Miguel Guerrero,<sup>a</sup> Juan Pablo Bernal U.<sup>a</sup> and Josefina De Gyves<sup>a</sup>

<sup>a</sup>Facultad de Química, DEPg, Universidad Nacional Autónoma de México, Coyoacán 04510, México, DF, México, and <sup>b</sup>Facultad de Química, USAI, Universidad Nacional Autónoma de México, Coyoacán 04510, México, DF, México. E-mail: sbernes@hunabku.pquim.unam.mx

(Received 18 April 1997; accepted 22 September 1997)

#### Abstract

The X-ray crystal structure of bis(1-azacycloheptane-2-thione-S)dichloromercury(II),  $[HgCl_2(C_6H_{11}NS)_2]$ , is reported, which is the first structurally characterized complex of  $\omega$ -thiocaprolactam with a heavy metal. The molecule exhibits disymmetric Hg—Cl distances of 2.480(2) and 2.613(2) Å, while the two organic fragments are coordinated with identical Hg—S bond lengths of 2.496(2) Å.

#### Comment

Solvent extraction of heavy metals such as  $Hg^{II}$  is important from the point of view of environmental protection problems. Extracting reagents containing sulfur as a donor atom are particularly effective and selective for  $Hg^{II}$  (Bromberg, Lewin & Warshawsky, 1993; Inoue, Yasukawa & Miura, 1994; Zuo & Muhammed, 1995). On the other hand, 2-thioxohexamethyleneimine ( $\omega$ -thiocaprolactam) has been tested as an analytical reagent (Sikorska-Tomicka, 1984, 1985). The syntheses, crystal structure determinations and reactivities of several of its complexes have been reported with Cu<sup>I</sup>

<sup>†</sup> Current address: Escuela de Ingeniería Química, Dpto. de Química, Universidad Michoacana de San Nicolás de Hidalgo, cd. Universitaria 58060, Morelia, Michoacán, México.